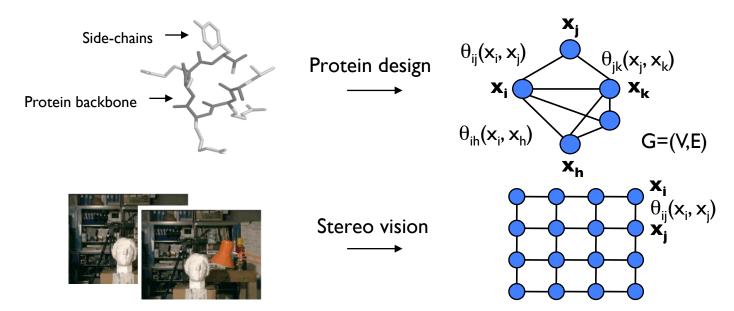
Approximate Inference in Graphical Models using LP Relaxations

David Sontag

Based on joint work with Tommi Jaakkola, Amir Globerson, Talya Meltzer, and Yair Weiss

MAP in Undirected Graphical Models

Real-world problems:



$$\Pr(x;\theta) \propto \exp\left(\sum_{(i,j)\in E} \theta_{ij}(x_i,x_j)\right)$$

Find most likely assignment:

$$x_{\text{map}} = \arg\max_{x} \sum_{(i,j)\in E} \theta_{ij}(x_i, x_j)$$

How to solve MAP?

- ☐ MAP is known to be NP-hard (e.g., MAP on binary MRFs is equivalent to Max-Cut)
- ☐ Real-world MAP problems are not necessarily as hard as theoretical worst case

How to solve MAP?

New toolkit: Message-passing algorithms based on linear programming relaxations

(Schlensinger '76, Kolmogorov & Wainwright '05, Vontobel & Koetter '06, Johnson et al. '07, Komodakis et al. '07, Globerson & Jaakkola '08...)

- ☐ Solves exactly when LP relaxation is tight: trees, binary submodular MRFs, and matchings
- In practice, we seldom have these structures
- By tightening the relaxation (problem specific), we can solve hard real-world problems, exactly

MAP as a linear program

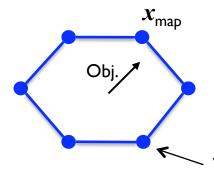
We can formulate the MAP problem as a linear program

$$\max_{\boldsymbol{x}} \sum_{((i,j)) \in \boldsymbol{E}} \theta_{ij}(x_i, x_j) = \max_{\boldsymbol{x}} \max_{\substack{\mu \in \mathcal{M}(G) \\ (i,j) \in E}} \sum_{x_i, x_j} \delta(x_i) = \mu_{ij}(x_i, x_j) \theta_{ij}(x_i', x_j')$$

where the variables μ_{ij} are defined over edges.

The marginal polytope constrains the μ_{ij} to be marginals of some distribution:

$$\mathcal{M}(G) = \{ \boldsymbol{\mu} \mid \exists \Pr(\boldsymbol{x}; \boldsymbol{\theta}) \text{ s.t. } \mu_{ij}(x_i, x_j) = \Pr(x_i, x_j; \boldsymbol{\theta}) \}$$



Very many constraints!

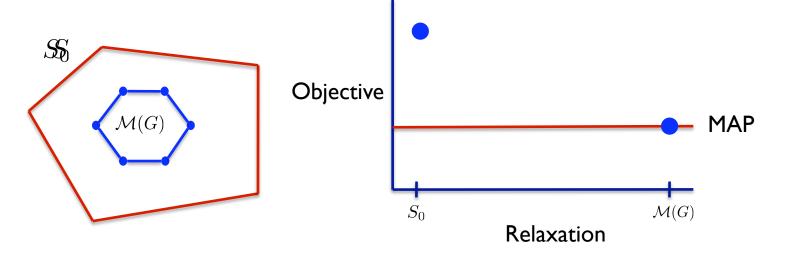
Vertices correspond to assignments

Relaxing the MAP LP

$$\max_{\boldsymbol{x}} \sum_{(i,j)\in E} \theta_{ij}(x_i, x_j) = \max_{\boldsymbol{\mu}\in\mathcal{M}(G)} \sum_{(i,j)\in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

Relaxing the MAP LP

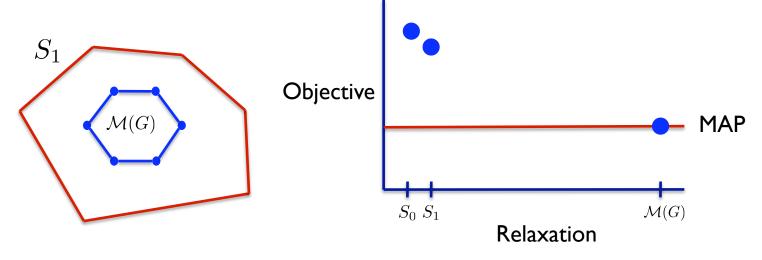
$$\max_{\boldsymbol{x}} \sum_{(i,j)\in E} \theta_{ij}(x_i, x_j) \leq \max_{\boldsymbol{\mu}\in S} \sum_{(i,j)\in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

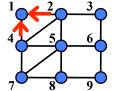


Simplest outer bound:
$$\sum \mu_{ij}(x_i,x_j)=1$$

$$\sum_{x_i, x_j} \mu_{ij}(x_i, x_j) = 1$$

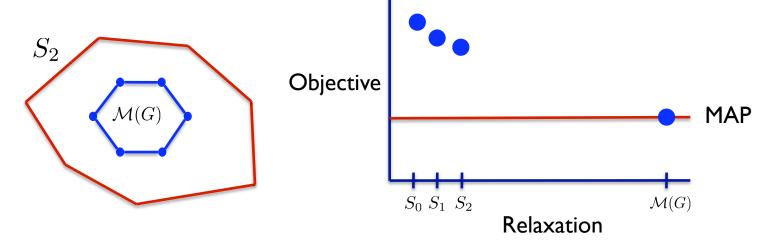
$$\max_{\boldsymbol{x}} \sum_{(i,j)\in E} \theta_{ij}(x_i, x_j) \leq \max_{\boldsymbol{\mu}\in S} \sum_{(i,j)\in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$





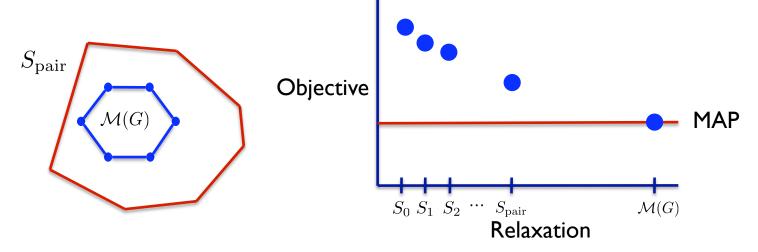
$$\sum_{x_2} \mu_{12}(x_1,x_2) = \sum_{x_4} \mu_{14}(x_1,x_4)$$
 Partial pairwise consistency

$$\max_{\boldsymbol{x}} \sum_{(i,j)\in E} \theta_{ij}(x_i, x_j) \leq \max_{\boldsymbol{\mu}\in S} \sum_{(i,j)\in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$



$$\sum_{x_1} \mu_{14}(x_1,x_4) = \sum_{x_5} \mu_{45}(x_4,x_5)$$
 Partial pairwise consistency

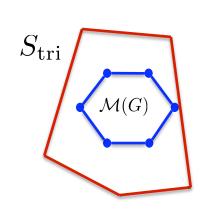
$$\max_{\boldsymbol{x}} \sum_{(i,j)\in E} \theta_{ij}(x_i, x_j) \leq \max_{\boldsymbol{\mu}\in S} \sum_{(i,j)\in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

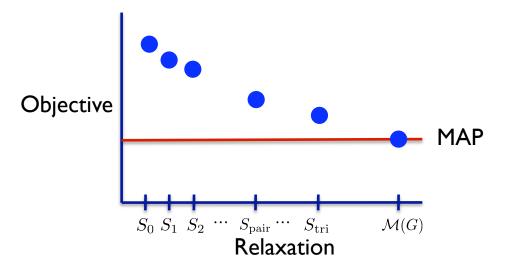


$$\sum_{x_i} \mu_{ij}(x_i, x_j) = \sum_{x_k} \mu_{ij}(x_j, x_k)$$
 Pairwise consistency

$$\max_{\boldsymbol{x}} \sum_{(i,j)\in E} \theta_{ij}(x_i, x_j) \leq \max_{\boldsymbol{\mu}\in S} \sum_{(i,j)\in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

Such that $\mathcal{M}(G) \subseteq S$



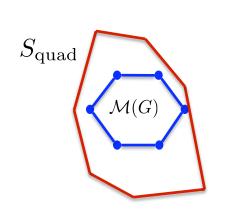


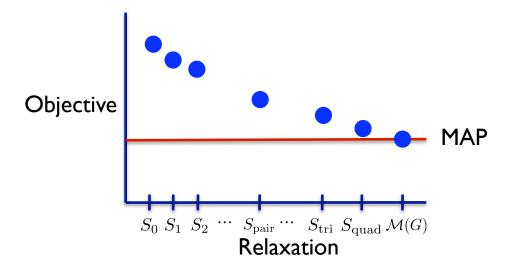
$$\sum_{x_k} \mu_{ijk}(x_i, x_j, x_k) = \mu_{ij}(x_i, x_j)$$

Triplet consistency

$$\max_{\boldsymbol{x}} \sum_{(i,j)\in E} \theta_{ij}(x_i, x_j) \leq \max_{\boldsymbol{\mu}\in S} \sum_{(i,j)\in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

Such that $\mathcal{M}(G) \subseteq S$



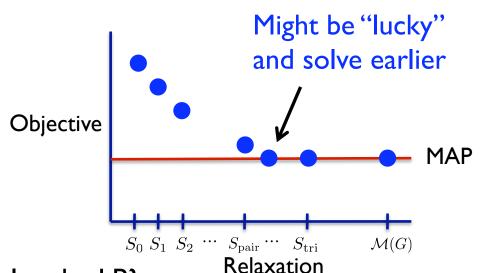


$$\sum_{x_k, x_l} \mu_{ijkl}(x_i, x_j, x_k, x_l) = \mu_{ij}(x_i, x_j)$$

Quadruplet consistency

$$\max_{\boldsymbol{x}} \sum_{(i,j)\in E} \theta_{ij}(x_i, x_j) \leq \max_{\boldsymbol{\mu}\in S} \sum_{(i,j)\in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

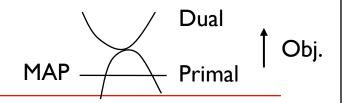
Such that $\mathcal{M}(G) \subseteq S$



Great! But...

- Can we efficiently solve the LP?
- What clusters to add?
- ☐ How do we avoid re-solving?

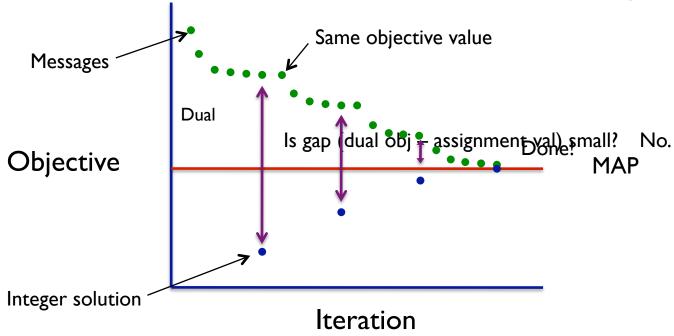
Our solution



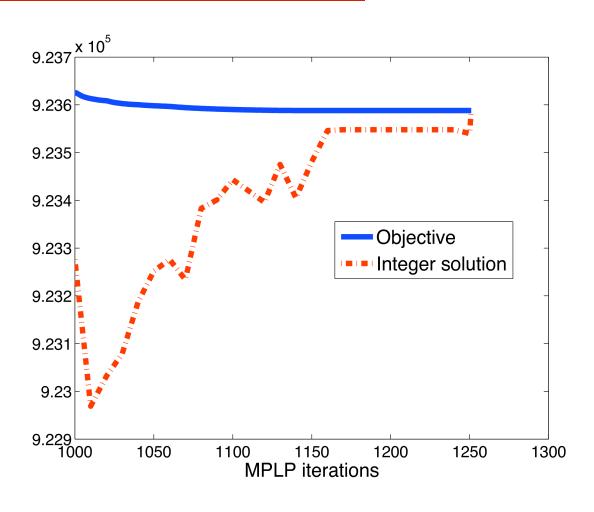
- Can we efficiently solve the LP?
 - We work in one of the dual LPs (Globerson & Jaakkola '07)
 - ☐ Dual can be solved by an efficient message-passing algorithm
 - Corresponds to coordinate-descent algorithm
- What cluster to add next?
 - We propose a greedy bound minimization algorithm
 - ☐ Add clusters with guaranteed improvement upper bound gets tighter
- How do we avoid re-solving?
 - "Warm start" of new messages using the old messages

Dual algorithm

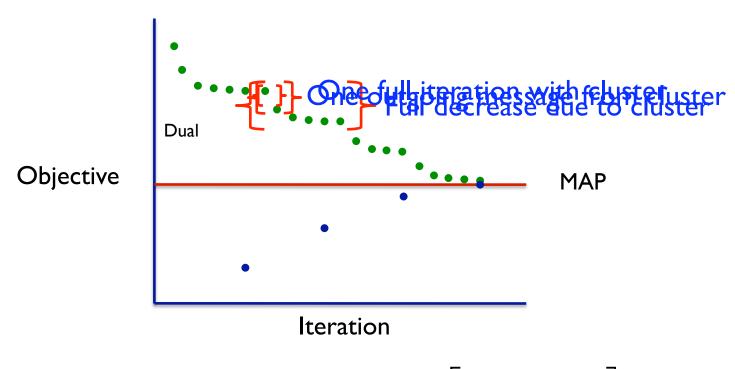
- Run message-passing
 Decode assignment from messages
- 3. Choose a cluster to add to relaxation
- 4. Warm start: initialize new cluster messages



Dual algorithm



What cluster to add next?

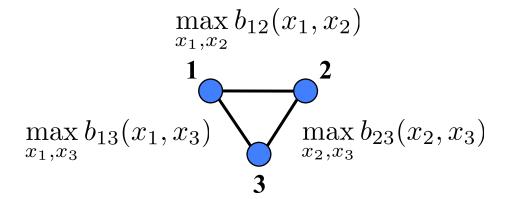


$$\sum_{e \in c} \max_{x_e} b_e(x_e) - \max_{x_c} \left[\sum_{e \in c} b_e(x_e) \right]$$

What cluster to add next?

$$\sum_{e \in c} \max_{x_e} b_e(x_e) - \max_{x_c} \left[\sum_{e \in c} b_e(x_e) \right]$$

$$\max_{x_1, x_2, x_3} \left[b_{12}(x_1, x_2) + b_{23}(x_2, x_3) + b_{13}(x_1, x_3) \right]$$



What cluster to add next?

$$\sum_{e \in c} \max_{x_e} b_e(x_e) - \max_{x_c} \left[\sum_{e \in c} b_e(x_e) \right]$$

$$3 * 99$$

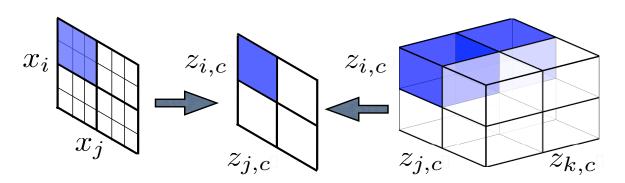
$$2 * 99 - 10$$

$$x_1 = 1$$
 $x_1 = 1$
 $x_2 = 0$
 $x_3 = 1$

If dual $b_{ij}(x_i, x_j) = 99$ if $x_i \neq x_j$ there was frustration otherwise

Coarsened cluster consistency

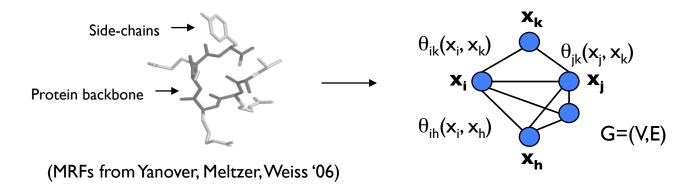
- \square Each new cluster requires adding a large number of LP variables $\mu_{ijk}(x_i, x_j, x_k)$ and constraints
- ☐ Is it possible to use just a subset of these constraints?
- We give a new class of sparse cluster constraints, enforcing consistency on coarsened variables



(Sontag, Globerson, Jaakkola, NIPS '08)

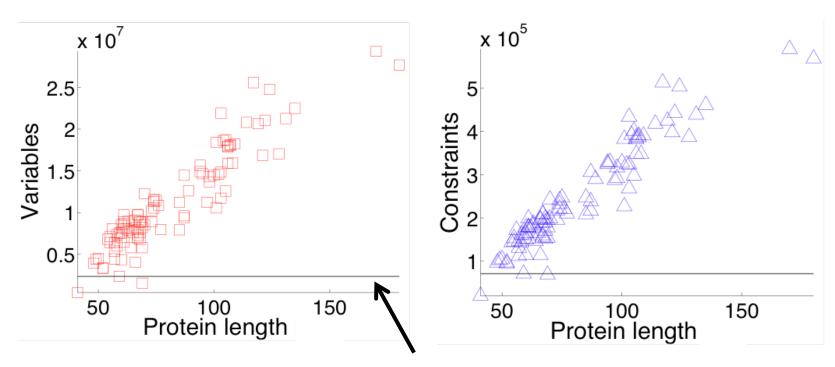
Experiments: Protein design

Given protein's 3D shape, choose amino-acids giving the most stable structure



- ☐ Each state corresponds to a choice of amino-acid and side-chain angle
- ☐ MRFs have 41-180 variables, each variable with 95-158 states
- Hard to solve
 - Very large treewidth
 - Many small cycles (20,000 triangles) and frustration

Primal LP, pairwise, is large



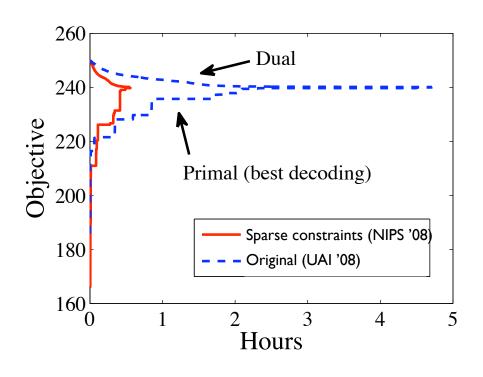
CPLEX can only run on 3: must move to dual!

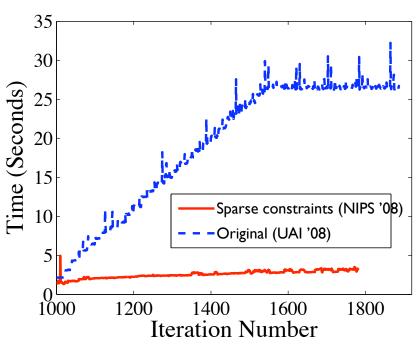
(Yanover, Meltzer, Weiss, JMLR '06)

Protein design results

- Pairwise constraints solve only 2 of the 97 proteins
- ☐ Iteratively tightening relaxation with triplets, we **exactly** solve 96 of the 97 proteins (!!!)
- Using the coarsened clusters, average time to solve 15 largest proteins is 1.5 hours
- □ Bound criterion finds the right constraints: Only 5 to 735 triplets needed to be added per problem

Coarsening clusters really helps





Related Work

- ☐ Similar ideas can be done directly in the primal
 - Selection criteria of constraint violation instead of bound minimization
 - (Sontag & Jaakkola '08)
- Can also be applied to marginals
 - Guidance by bound on partition function rather than MAP value
 - Similar to region-pursuit algorithm for generalized BP (Welling UAI '04)

Conclusions & Future Work

New toolkit of message-passing algorithms based on dual LP relaxations

+

Iterative tightening of LP relaxation

Ability to solve interesting real world-problems

- More generally, when can we expect these MAP inference techniques to be successful?
- ☐ How should we do learning with approximate inference in particular, with LP relaxations?